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A new continuum model is formulated for dilute suspensions of swimming micro- 
organisms with asymmetric mass distributions. Account is taken of randomness in a 
cell's swimming direction, p ,  by postulating that the probability density function for 
p satisfies a Fokker-Planck equation analogous to that obtained for colloid 
suspensions in the presence of rotational Brownian motion. The deterministic 
torques on a cell, viscous and gravitational, are balanced by diffusion, represented by 
an isotropic rotary diffusivity D,, which is unknown a priori, but presumably reflects 
stochastic influences on the cell's internal workings. When the Fokker-Planck 
equation is solved, macroscopic quantities such as the average cell velocity V,, the 
particle diffusivity tensor D and the effective stress tensor Z can be computed ; V,  
and D are required in the cell conservation equation, and Z in the momentum 
equation. The Fokker-Planck equation contains two dimensionless parameters, h 
and E ;  h is the ratio of the rotary diffusion time 0;' to the torque relaxation time B 
(balancing gravitational and viscous torques), while E is a scale for the local vorticity 
or strain rate made dimensionless with B. In  this paper we solve the Fokker-Planck 
equation exactly for E = 0 ( A  arbitrary) and also obtain the first-order solution for 
small E .  Using experimental data on V ,  and D obtained with the swimming alga, 
Chlamydomonas nivalis, in the absence of bulk flow, the E = 0 results can be used to 
estimate the value of h for that species ( A X  2.2; D, x 0.13 s-'). The continuum 
model for small E is then used to reanalyse the instability of a uniform suspension, 
previously investigated by Pedley, Hill & Kessler (1988). The only qualitatively 
different result is that  there no longer seem to be circumstances in which disturbances 
with a non-zero vertical wavenumber are more unstable than purely horizontal 
disturbances. On the way, it is demonstrated that the only significant contribution 
to  Z, other than the basic Newtonian stress, is that derived from the stresslets 
associated with the cells' intrinsic swimming motions. 

1. Introduction 
This paper is concerned with the development of a rational continuum description 

of the properties of suspensions of active small particles. The aim is to be able to 
analyse collective behaviour and pattern formation in populations of swimming 
micro-organisms. Bioconvection is the term used to describe the convective 
instabilities that result from the swimming of micro-organisms that are slightly 
denser than the ambient fluid ; for example, Childress, Levandowsky & Spiegel(l975) 
showed how pure upswimming of such organisms can result in a density stratification 
which is unstable by mechanisms analogous to that of Rayleigh-BBnard convection. 
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Kessler (1984) demonstrated that certain species of micro-organisms swim upwards 
in still fluid because they are bottom-heavy; this has the consequence that when a 
cell is swimming in a shear flow, the viscous torque exerted on it by the fluid, coupled 
with the gravitational torque resulting from its asymmetric mass distribution, will 
orient it so that its swimming direction is not in general vertical, a process known as 
gyrotaxis. 

Gyrotaxis causes bottom-heavy cells to  be concentrated in regions of downflow, 
and away from regions of upflow, thereby making the downflow regions denser than 
the upflow regions. This provides a mechanism for the instability of an initially 
uniform suspension, which would be stable if the cells merely swam upwards ; such 
an instability has been demonstrated experimentally by Kessler ( 1986a), and 
theoretical analysis has been given by Kessler (1986 6) and by Pedley, Hill & Kessler 
(1988, henceforth referred to as PHK). The final, nonlinear patterns generated after 
such an instability are observed to take the form of long vertical plumes, spaced a 
few mm apart and with fluid velocities significantly greater than the cell swimming 
speed (Kessler 19866). 

The micro-organism used in Kessler’s experiments is the motile alga, Chlamy- 
domonas nivalis, depicted in figure 1. The cell body is approximately a prolate 
spheroid, of length d about 10 pm, volume v about 500 pm3 and major-to-minor axis 
ratio about 1.4. The cell density p+Ap exceeds that of the surrounding water, p,  
by about 5 %. The cell swims by means of a pair of flagella located near one end (the 
‘front’ end) of the major axis; these flagella operate a sort of low-Reynolds-number 
breast-stroke, and propel the cell a t  a speed V ,  of around 70 pm s-l relative to the 
ambient fluid. Many cells appear to spiral as they advance, as if the flagella exert a 
torque about the cell axis as well as a thrust parallel to it. Note however that C. 
nivalis is just one example ; we expect that  a theory of the type presented here will 
be applicable to a wide range of swimming micro-organisms, oriented by a variety of 
external influences (light, chemical gradients, etc.), not to mention certain passive 
bodies such as charged particles under the action of the force and couple induced by 
an electric field (see Baloch & van de Ven 1989). 

In  our model we assume a dilute suspension and neglect all cell-cell interactions. 
Guell et al. (1988) showed how cell-cell interactions could be responsible for pattern 
formation in suspensions of magnetotactic bacteria swimming parallel to an applied 
magnetic field. There the bacteria swim in bands, transverse to the magnetic field, 
each band moving with a speed roughly equal t o  the cell swimming speed, and 
neighbouring bands being distinguished by different swimming speeds (Spormann 
1987). We cannot rule out the possibility that such an effect may be important in 
algal suspensions a t  a large enough volume fraction, but the fact that the observed 
fluid speeds are significantly greater than the cell swimming speed suggests that it is 
not dominant. 

1.1.  Continuum equations 
I n  this paper, as in PHK and in Childress et al. (1975), we shall develop a continuum 
model for a dilute suspension of swimming cells, requiring that the volume fraction 
nu, where n(x, t )  is the number of cells per unit volume, dependent on position x and 
time t ,  be small compared with unity. The equations governing conservation of mass, 
momentum and cell number in such a model are 

T7.U = 0, (1.1) 
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FIGURE 1. Photomicrographs of the swimming alga, Chlamydomonas nivalis. (a )  Stationary and 
pressed between microscopic slides, so the flagella are visible (the minor axis of the cell on the left 
is 8 pm). ( b )  Swimming freely in a chamber 1 mm deep. The microscopic axis is horizontal, the 
upward direction and scale bar are indicated in the inset. The white streaks are swimming cells, 
seen in dark field on a TV monitor. The illumination was on for 3 s ;  then the shutter opened, closed 
and opened in rapid sequence, followed by permanent closing. The dark spot followed by a light 
spot at the end of a cell track indicates its direction. Note that some cells exhibit a more helical 
trajectory than others. The width and illumination of the tracks vary with focus. 
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Du 
Dt 

p-=  - v p  + nvApg+V.Z,  

an 
= - V - [ n ( u +  V , ) - D - V n ] ,  - 

at 

where u(x , t )  is the Eulerian velocity field of the suspension, g is the gravitational 
vector, p , (x ,  t )  is the pressure excess above hydrostatic (at density p ) ,  Z(x, t )  is the 
bulk deviatoric stress tensor, V,(x,  t )  is the mean cell swimming velocity, representing 
the contribution of active swimming to  cell flux, and D ( x , t )  is a cell diffusivity 
tensor, representing randomness in the cell swimming velocity (note how the cells 
depicted in figure l ( b )  are not all swimming in the same direction). It has been 
assumed that the cells and the fluid are incompressible, leading to (1.  l),  that density 
variations do not affect the inertia term in (1.2) (the Boussinesq approximation), and 
that sedimentation can be neglected in (1.3) (the sedimentation velocity for these 
cells can be estimated to be about 3 pm s-l, much less than the swimming speed K). 
We retain these assumptions here. However, other assumptions made by PHK 
demand closer examination. 

1.2. Randomness in the cell conservation equation 
Consider first the mean cell swimming velocity V ,  in (1.3). In the previous model, we 
assumed that all cells in a volume element swim relative to the fluid with the same 
speed V ,  in the same directionp, wherep(x, t )  is the unit vector in the direction of the 
cell’s axis of symmetry ; thus 

It was further assumed that p = P, the swimming direction determined by the 
(quasi-) steady gyrotactic torque balance on the cell, as calculated by Pedley & 
Kessler (1987) using the expressions for viscous torque on a spheroid, moving a t  low 
Reynolds number in a fluid with non-zero vorticity and strain rate, given by 
Batchelor (1970) based on Jeffery (1922). However, we know that there is some 
randomness in the cells’ swimming : different cells have different swimming speeds 
and directions (figure l b ) ,  and a given cell has a variable speed and direction. If we 
assume that swimming speed and direction are independent stationary random 
variables, we can take V ,  as the mean swimming speed, but in place of (1.4) we should 
write 

y,  = v,p. (1.4) 

K = K(P>, (1.5) 

where ( ) represents the ensemble average (assumed to be the same as the volume 
average over a volume element). The previous assumption that p = P for all cells in 
a volume element is equivalent to assuming that the randomness is in some sense 
very weak compared with gyrotaxis in determining the swimming direction. 

Now consider the cell diffusivity tensor D in (1.3). Childress et al. (1975) recognized 
that vertical cell swimming would lead to anisotropy and took D to be orthotropic, 
with different values for vertical and horizontal diffusivities, Dv and D,; though 
they had no way of estimating the ratio D,/Dv, the results of their analysis agreed 
better with experiments using Tetrahymena if D, were significantly less than Dv. In 
the absence of any knowledge of this ratio, PHK took D to be isotropic. This 
corresponds to assuming that the randomness is in some sense very strong compared 
with the gyrotactic bias. Thus the PHK model as it stands (and any other model for 
a suspension of swimming cells that incorporates isotropic diffusivity with some sort 
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FIQURE 2. Individual trajectories of C. niwalis, from the measurements of HLder BE Hill (1990) ; (a) 
horizontal projections, (b )  vertical projections. In each case the initial points of every measured 
trajectory are taken to be the same. 

of directed swimming, e.g., Keller & Segel 1970) is inconsistent, assuming weak 
randomness to specify V ,  and strong randomness to specify D. Of course, it  would be 
simple to modify the PHK model to incorporate different values for D, and D,, but 
it would be important to have some knowledge of their relative magnitudes. The 
analysis of this paper will lead to an estimate of D,/D, that is greater than unity. 
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Moreover, data have recently been obtained on precisely this question for one 
particular species. Hader & Hill (1990) have plotted horizontal and vertical 
projections of large numbers of individual trajectories of C. nivalis, swimming in a 
fluid with no imposed ambient flow so that the only orienting mechanism is gravity, 
which we would expect to cause the cells to swim vertically upwards on average. 
They obtained results for three different values of cell concentration no, 5 x lo5, 
1 x lo6 and 2 x 10" cells cmP3, respectively. Even the largest of these corresponds to 
a volume fraction of only lop3, so the suspension can be regarded as dilute and 
cell-cell interactions may be supposed negligible. Examples of the projected 
trajectories are given in figure 2 ;  the motion is extremely random. Preliminary 
analysis of the vertical projections for the lowest no reveals the following quantitative 
data : 

(i) The mean cell swimming speed, V,, is 63 pm s-l, somewhat below the value of 
100 pm sP1 estimated by Kessler ( 1 9 8 6 ~ )  and used by PHK. 

(ii) The mean cell velocity V ,  has a vertical component about 10 times the 
horizontal component, the value of the vertical component being 32 pm s-'. Thus it 
is a reasonable approximation to take V, = V, k (k being the upwards unit vector) 
with VJV,  x 0.51. 

cm2 
s-l and Dv = 0.67 x cm2 s-l, so D,/Dv x 1.94, greater than one (the values of 
D, and D, are somewhat below those estimated by Kessler (1986u), mainly because 
V ,  is lower than his estimate). 

These data will be used below in applying our new model to suspensions of C. 
nivalis. For future reference, we also note that analysis of the horizontal projections 
gives a direction correlation time 7 (see (1.15) below) of about 5 s. 

(iii) The effective horizontal and vertical cell diffusivities are D, = 1.3 x 

1.3. The bulk deviatoric stress tensor Z 
A further idealization of the PHK model was to ignore all effects that the cells may 
have on the bulk fluid motion apart from their negative buoyancy. Thus in (1.2), it 
was assumed that 

Z = 2pE, (1.6) 

where E is the bulk rate of strain tensor and ,u is the fluid viscosity. In fact, however, 
there are a variety of ways in which the cells can influence the motion by modifying 
Z, even in a dilute suspension. First of all, there are ' stresslets ' and 'couplets ' that 
arise from the fact that  a suspended body does not in general deform and rotate in 
the same way as the fluid would if the body were not there. These effects were 
analysed in detail by Batchelor (1970), who showed that they lead to a contribution 
to Z of Z(p), where, for rigid spheroids whose axis of symmetry is the unit vector p ,  

SP) = 4pnv{al E : (pppp)  + a, (E ( p p )  + ( p p )  - E )  + a3 E + a4 E : ( p p )  r )  

where L = - p h p  A g (1.8) 

+gn~&*<L)+~ao<@ A L)P+P@ A L))) ,  (1.7) 

is the external couple applied to the fluid by an individual cell ( -hp  is the 
displacement of the cell's centre of mass from the centre of the spheroid), E is the 
alternating tensor, 

a2 - b2 
a0 = - 

u2 + b2 
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I 1 

FIGURE 3. Schematic diagram of a swimming biflagellate, illustrating the calculation of its 
stresslet strength (see text). 

is a measure of the eccentricity of the spheroid, and al,  a2, a3, a4 are further constants 
depending only on a. (see Appendix A). Note that 

@ A L)P+P@ L)  = Pvhg[f@.k)PP-kP-Pkl. (1.10) 

There is a further contribution to the particle stress resulting from the effective 
particle rotation caused by the rotary diffusion of p in orientation space (see the 
discussion following (1.16) below). This is explained by Brenner (1972) and by Hinch 
& Leal (1972a), and the resulting contribution to the stress tensor is 

ad) = 2pnvD, aa( (pp) - $/), (1.11) 

where a6 (called P(r )  by Hinch & Leal 1972a) depends on a. and is also given in 
Appendix A, and D, is the rotary diffusivity, with dimensions of inverse time. 

In the case of swimming cells, there is an additional stresslet contribution to the 
stress tensor from the locomotory motions themselves. Consider the biflagellate 
depicted in figure 3, and suppose that each flagellum exerts (on average) a thrust 
force - Tp on the fluid, while the body therefore exerts a drag force + 2Tp. For a 
spheroid moving with relative speed V ,  parallel to its axis, 

2T = 6xbpKaF, (1.12a) 

where aF depends on the eccentricity and is given in Appendix A. If the displacements 
of the points of application of the thrust forces from the centre of the body (i.e. from 
the effective point of application of the drag) have magnitude 2 and are inclined (on 
average) at angle y withp, then, neglecting inertia, the velocity field at displacement 
x from the body, where r = 1x1 $+ 1, is dominated by the stresslet term (Batchelor 
1970) : 
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where the stresslet strength S is given by 
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S = 2Tl C O S ~ @ ~ - ; / ) .  

Thus the contribution to the bulk stress tensor from a volume distribution of such 
stresslets is given by 

SS) = nS( ( p p )  -$I), (1.12 b) 

where S = 2Tl COSY. (1.12 c )  

As remarked above, the locomotory motions also cause rotation of the cells, both 
as a spiralling about the axis of symmetry and as the frequent rotations about a 
transverse axis that contribute to  the randomness in swimming direction. Such a 
rotation is a consequence of a torque, G say, exerted by the flagella and will be 
balanced (since the cell Reynolds number is assumed to be zero) by an equal and 
opposite resistive torque -G exerted by the cell body. Thus the net torque is zero 
and these motions do not contribute to the bulk stress tensor, unlike the external 
torque L which appears in (1.7). 

In summary, therefore, we shall take the total deviatoric stress tensor to be the 
sum of the contributions given by (1.6), (1 .7) ,  ( l . l l ) ,  and (1.12b): 

z = 2pE + P' + Z(d) + 2P. (1.13) 

It should be remarked (a) that i t  may not be consistent to  treat P)  and 23') as 
purely additive, and (b )  that there are at least three further contributions that may 
be important in practice, but are ignored here. The first is cell-cell interaction, 
negligible only if the suspension is sufficiently dilute; another is the effect of the 
flagella on Z(p), here calculated on the assumption that the cells are pure spheroids; 
and the third is the influence of the flagella on the gyrotactic torque balance that is 
used to  calculate V ,  (equation (1.5)) and other average quantities. The last two effects 
require a detailed study of the low-Reynolds-number locomotion of biflagellates, 
beyond the scope of this paper. It fortunately turns out that, for the parameter 
values appropriate to C .  nivalis, the quantities Z(P) and are negligibly small so 
errors in computing them are unimportant. They are retained in the analysis in case 
features such as the asymmetry of BP) introduce qualitatively new effects into the 
results (see 54). 

1.4. Basis of the new model 

The aim of this paper is to reformulate the continuum model for a dilute suspension, 
incorporating random swimming behaviour from the start, and not neglecting the 
effect of the cells on L'. We shall also use the new model to reanalyze the stability of 
a uniform suspension, as in PHK, to see how the newly included effects alter the 
conclusions. 

The method will be as follows: we suppose that, in the absence of all torques, 
either viscous or gravitational (i.e. the cells are in a stationary fluid a t  zero g) ,  the 
cells swim in totally random directions, so that the cell swimming direction p is a 
stationary random variable with isotropic probability density function (p.d.f.), 
f @ )  = 1147~. Thus in this case (p), defined by 

c c  

(1.14) 
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where the integral is over the surface of the unit sphere in p-space, is zero ; also V,, 
given by (1.5), is zero. Moreover the cell diffusivity tensor D is defined by 

D(t) = ( V , ( t )  v(t-t’))dt’, lorn 
where V ,  is the velocity of a cell relative to its mean value. Thus, if V ,  is a constant 
we have 

D = E.<@-<p>) @-+)I), 
independent of time t ,  where 7 is the direction correlation time, or 

(1.15) 

this gives the tensorial character of D even if 7 is unknown. If V,  is itself a random 
variable we might expect some modification of (1.15), but that  has not yet been 
investigated. In  the absence of gravity or flow, D is isotropic: 

D = ;Ed, 
where / is the identity tensor. 

In  the presence of gravity and flow, however, gyrotaxis occurs and there will be a 
bias in f@). Cells will still perform their random swimming motions, but whatever 
their instantaneous direction p ,  there will be a tendency for reorientation towards the 
local equilibrium direction P. Assuming that the intrinsic tendency for the cells to 
change direction randomly is independent of the instantaneous direction, the 
situation may be taken to be analogous to  that of small particles in suspension 
subjected to rotary Brownian motion, and we shall model it accordingly. It should 
be emphasized that this is not a case of thermal Brownian motion, since the cells are 
too big and move too quickly to be influenced by that, but we are treating i t  
analogously. Thus we can make use of all the theory already developed for such 
suspensions, for example, by Brenner (1974) and by Hinch & Leal (1972a), etc. The 
p.d.f. f @) must satisfy the Fokker-Planck equation (representing conservation of 
probability density) : 

’+V.@f) at =D,V2f, (1.16) 

where V is the gradient operator in two-dimensional p-space and p is the rate of 
change of p, determined by the balance of viscous and gravitational torques to be 

p = B-’[k-(kap)p]+52 ~ p + 2 a , p . € . ( / - p p )  (1.17) 

(this expression is a combination of those given by Leal & Hinch 1972 and Hinch & 
Leal 1972b, both essentially derived from Jeffery 1922). Here the only undefined 
quantities are 52, the ambient vorticity, and 

(1.18) 

which is the timescale for reorientation of a cell by the gravitational torque against 
the resisting viscous torque (a, is the dimensionless resistance coefficient for rotation 
about an axis perpendicular to p, defined in Appendix A) ; B is also the ‘gyrotactic 
orientation parameter ’ of Pedley & Kessler (1987). 
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The quantity D, in (1.16) is a rotational diffusivity with dimensions of inverse 
time. In the case of thermal Brownian motion a t  temperature T, 

(1.19) 

where 5 is Boltzmann’s constant, but since in our case we have no a priori notion of 
what ‘kT’ must be, we leaveD, as an unknown constant. Its value for Chlarnydmonas 
nivalis can be estimated from the data of Hlider & Hill (1990) ; see below. 

We assume that, even in time-dependent flows, f is a stationary function, i.e. a f /a t  
is negligible in (1.16). This is equivalent to assuming that D;l is much less than the 
timescale for variation of the flow, so we need to check later that D, is indeed much 
larger than the growth rate of instabilities. In  $2 we shall solve the steady form of 
(1.16) for the case in which there is no flow, but gravity is important ; there is then 
just the one dimensionless parameter, 

h = (BD,)-’. (1.20) 

The result forf@) will then be used to compute the average quantities (p) and D 
(equations (1.14) and (1.15)); these will be directly comparable with the data of 
Hader & Hill (1990), and we shall be able to infer the values of h and hence D, for 
their suspension of C. nivalis. We shall also compute all averages required for Z 
(equations (1.7), (1.11) and (1.12b)) in this limit of zero flow. In $3  we shall go on to 
compiite the first-order correction t o t @ )  required by the presence of a weak ambient 
flow for which Bw Q 1, where w is a scale for vorticity and strain rate. This is a severe 
restriction for the modelling of fully developed bioconvection patterns, but is 
appropriate for the linear stability analysis to which the model is first going to be 
applied. The corresponding corrections to (p), D and Z will also be computed, but, 
since in the context of the stability analysis f2 and E are already first-order small 
quantities, we do not need to compute the corrections to the averages involving them 
in (1.7). That is a considerable simplification. The stability problem is solved in $4, 
and a discussion of desirable future developments of the theory is given in $5.  

2. The case of pure gravity, no flow 

be written 
The Fokker-Planck equation (1.16), with af/at = 0 and withp given by (1.17), can 

h-’V2f= k.Vf-2(k.p)f+~{o-@ A Vf)+2aO@.e.Vf-3p.e.pf)}, (2.1) 

where h is given by (1.20), o and e are the vorticity and rate of strain made 
dimensionless with the scale w ,  and 

6 = Bw. (2.2) 

The value of A is arbitrary, but we shall take e Q 1 ; this is the limit discussed, for 
example, in Appendix C of Brenner & Weissman (1972) during their analysis of a 
suspension of spherical cells subjected to external couples. In  this section we shall 
take E = 0, with O(E)  corrections calculated in $3. 

Throughout the paper, we shall use a coordinate system fixed in the laboratory 
frame with the 3-axis vertically upwards, parallel to k. The unit vector p is 
represented by Euler angles 8, with p- k = cos 8. Brenner & Weissman (1972) took 
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the 3-axis parallel to the local vorticity vector, but that is both cumbersome and 
inapplicable in the absence of ambient flow. Putting e = 0 in (2.1) and taking 

p = (sinOcosq5,sinOsinq5,cost?), (2.3) 

the equation for f becomes 

This must be solved subject to the requirements that f should be positive and finite, 
should tend to  the isotropic solution 1147~ as h+O (i.e. as randomness dominates 
gravity), and should obey the normalization condition 

S’rf(t?,q5)ainOdOdq5 0 0  = 1. (2.5) 

These requirements show that f is independent of q5, and the appropriate solution of 
(2.4) is 

where ,u = h/(4nsinhh) (2.7) 

(Brenner &, Weissman 1972). 

conservation equation (1.3). From (1.14) we have 
We first compute the zero-order (in E )  average quantities required in the cell 

(p)“) = ( O , O ,  coth A- l /h) ,  (2.8) 

VJV,  = cothh- l / h  = K ,  (say). (2.91 

which is vertically upwards as expected and gives I V,l/V,, from (1.5), as 

This quantity approximates to $A as h+O, and 1 -  l / h  as A+ co, confirming that 
there is no net drift velocity if randomness dominates gravity, and V ,  - V ,  when 
randomness is negligible, so all cells swim vertically upwards with speed V,. 

To evaluate Do), we require (pp)(O)’, which is a diagonal tensor with 

(pp);;) = (pp)g)  = K J h ,  (pp)g)  = 1 -2KJh. 

0;;) = Dg)( = DH) = Z ; K , / h ,  Di!) = (D,) = C T K ~  

(2.10a, b )  

Thus, from (1.15), we have that D(O) is also diagonal, with 

(2.11a, b )  

where K ,  = 1-coth2h+1/h2; (2.11c) 

thus DH/DV = K l / h K 2 ,  (2.12) 

which tends to 1 + 2h2/15 as h + 0 and to A( 1 - l /h )  as h + 00. As shown by the above 
results of Hlider & Hill (1990), the quantities given in (2.9) and (2.12) can be 
measured ; a test of the present model is therefore to  see if the same value of A is given 
by each measurement. I n  figure 4 we plot VJV, aganist D,/D,, and mark on it the 
point taken from the data (V, /V,  = 0.51, DH/Dv = 1.94). This point lies quite near 
the theoretical curve, which is encouraging. The value of h corresponding to V,/V,  = 
0.51 is 1.85, while that corresponding to D,/Dv = 1.94 is 2.63; the corresponding 
points are marked on figure 4. A particular value is needed in order to apply the 
present theory ; we (somewhat arbitrarily) choose the average of the above numbers, 
rounded off to two significant figures: h = 2.2; this point is also marked on figure 4. 
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FIQURE 4. Plot of V, /V ,  versus D,/D,, for algae swimming in a gravitational field with no flow, as 
calculated from (2.9) and (2.12). The filled circle is the experimental point from the data of Hader 
& Hill (1989). The cross on the curve is the point chosen for estimation of A (see text). 

We may note that, since the data for C. nivalis listed in PHK give B % 3.4 s, this 
value for h indicates a value of D, x 0.13 s-', from (1.20). 

The measured value of D ,  reported above is 1.3 x lop5 cm2 s-l. Coupled with the 
measured value of V ,  of 63 pm s-l and the calculated value of K,/h = 0.26 for h = 
2.2, (2.11a) gives a direction correlation time T equal to 1.3 s, significantly shorter 
than the observational estimate of 5 s. The source of this discrepancy is unknown, 
although Hader & Hill (1990) suggest that the estimate of diffusivity is more certain 
than that of T .  Where needed below, therefore, we shall use T = 1.3 s. 

We now list the average quantities needed for the bulk stress tensor; their values 
for the experimental value of h of 2.2 are given in table 1 below or in square brackets 
after the relevant equation. From ( l . l l ) ,  (1.12) and (2.10) we have that S d ) ( 0 )  and 
Z@)(O) are diagonal. Writing 

2Pd) = 23') + Sd) and S' = S+ 2pvD, a5 (2.13) 

we have z.I"p) ( 0 )  = z ( s d )  22 ( 0 )  = - 2 Lc(sd)  33 ( 0 )  = - znS'K3, 1 ( 2 . 1 4 ~ )  

where K3 = 1 - 3K1/h. (2.14b) 

In  (1.7) the first term involving the couple L is (L)(O), which is zero; the next term, 
~ao(@ A L ) p + p @  A L))(O) can be evaluated using ( l . l O ) ,  and is also a diagonal 
tensor, EL)(') say, such that 

zg)(O) = Z ( L ) ( O )  22 = - L p ) ( O )  2 33 = 1 znao P"h9K3lh. (2.15) 

In view of (2.10), the only term in (1 .7)  that remains to be evaluated is (pppp)(O), 
which we will denote by Cijicl. We see that Cijkt = 0 if any three of ( i jk l )  are the same 
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and different from the fourth or if only two of (ijkl) are the same. Otherwise, i f  
( i jk l )  = (1122) in any order, then 

3ctjkl = C,,,, = C,,,, = 3K3/A2 [ = 0.141, ( 2 . 1 6 ~ )  

i f  ( i jk l )  = (1133) or (2233) in any order, then 

finally 

C,,, = - ;[; ( 5  + $) - ~ 0 t h  h ( 1  + $)] [ = 0.0761 ; 

12 24 4cothh 
( 1  +$)I [= 0.331. 

(2.16b) 

( 2 . 1 6 ~ )  

3. First-order corrections for weak ambient flow 

in terms of our Euler angles the equation for f y e ,  q5) becomes 
When 8 -4 1 we may set f =f(0)(8)+ef(1) in the Fokker-Planck equation (2.1), and 

where we have used the fact that a f ( O ) / a q 5  = 0 and where 

e, = (cos 8 cos 4, cos 8 sin 4, -sin 8) 

is the unit vector in the direction of increasing 8. The coefficients in the last term of 
(3.1) are 

p - e - e ,  = - $33 sin 28 + i ( e l l  - ez2) sin 28 cos 2q5 

+ te12 sin 28 sin 2q5 + e13 cos 28 cos q5 + e23 cos 28 sin q5 (3.2) 
and 

p - e - p  = +eS3 ( 3  cos2 8- 1 )  +&el, -ezz) sin2 8cos 2q5 
+ e12 sin2 8 sin 2 4  + e13 sin 28 cos # + e23 sin 28 sin 4, (3.3) 

where we have used the identity e,, = 0, from incompressibility. 

3.1. Spherical cells 

For spherical cells a, = 0, the rate-of-strain tensor does not influence f@),  and (3.1) 
is considerably simplified. This is the case treated by Brenner & Weissman (1972), 
but not all quantities of interest here were evaluated in their Appendix C. Making the 
transformation x = cos 8 and writing 

f (W, q5)  = hp(w2 cos q5 -wl sin $1 g,(x), 

d 
'1 h-[(1-x2)q11 = -h(l-x2)ieA", we obtain -[(l-x2)gi]--- 

d 
dx 1-x2 dz (3.4) 

where it prime denotes differentiatio'n with respect to  x. 
The first two terms of (3.4) suggest that we express the solution as a series of 
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associated Legendre functions, Pi(x) = (1 -x2)t d P,(x)/dx, bu t  it proves convenient 
to expand first in powers o f h .  Thus we write 

m 

g1 = C AnGn(x), 
n-1 

d Gn+1 d ( 1 - X”+ XR 
- - “ ( ~ - Z ’ ) G ~ ] -  

- “ 1 - z 2 ) G G ’ b + l l - ~ -  dx n!  dx 
so that , 

and then set 

(3.5) 

Substitution of this last expression into (3.5), using the standard recurrence relations 
for the P: (see Arfken 1985, p. 669) yields the following recurrence relation for the 
an.r’ 

where 

b n + , , r  = (1-x2)ixnPf(x)dx (n = 1,2 ,  ...; 1 < r < n + l ) .  (3.7b) 

Thus 
b,,, , ,  = O if n + r  is even 

= +  - \  

n- r  
4r(n t 1) r( 7 

+3) =(. ‘ is i-; ’ + 4) i f n + r i s o d d ;  (3.8) 

\ -  

the formula for the integral in (3.7) is given by Gradshteyn & Ryzhik (1980, p. 799).t 
It follows that an+,,, is also zero if n + r  is even. The leading non-zero coefficients in 
the series for Gn are 

1 
% , I  = 2, a2,2 = 36’ a3,1 = h, a3,3 = %; 

higher terms can be computed readily when needed. 

(p)‘’) + e(P)(’) + . . . , etc., we obtain 
We can now compute the first-order corrections to (p>, ( p p ) ,  etc. Writing (p) = 

(p>‘l’ = (w2, - w , , O )  J1, (3.9a) 

00 

Jl = xAp (1 -z2);g1(~)  dx = Q ~ h p  x h21+1a21+,,l. (3.9 b )  I’ 1=0 

where 

Moreover (pp)ji) is non-zero only when i , j  = 1,3 or 2 , 3  in some order : 

(pp)\\’ = w2 J2 ; (pp):;’ = - w1 J2, ( 3 . 1 0 ~ )  

1 m 
J, = xhp x(1 -z2);g1(X)dx = &tAp h 2 z ~ , z , 2 .  (3.1Ob) S_, 1=1 

where 

t The definition of P,“(r) given by Gradshteyn & Ryzhik (1980) is ( -  1)” times that given by 
Arfken ( 1985). 
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The quantity <2@.k)pp-kp-pk) ( ' ) ,  required in (1 .7)  from (1.10) when a, =+ 0, is 
also a symmetric tensor B, with the only non-zero elements being 

B13 = W Z ( J 3 - J 1 ) ,  B23 = -W1(J3-J1), ( 3 . 1 1 ~ )  

where J3 = n h p S _ l z 2 ( l - z 2  )'g1(z)dz a = g ~ h p  C h2z+1a,,+l,3+~Jl.  (3.11b) 

The coefficients an,r turn out to decrease rapidly as n increases. For example, when 
I 2 4, the terms a21+1, alternate in sign and la,,+,, 1/a2z-1, l I  is somewhat less than 0.1 ; 
similar results are obtained for a2z,2 and u ~ , , ~ .  Thus the power series for J1 ,J , ,  J3 not 
only converge, but are asymptotically useful without further manipulation for 
h 5 2/10. The same is true for the power series which define other constants 
4 (i = 4,5, ..., 8) .  Values of all these constants, and the constants Kt (i = 1,2,  ..., 8 )  
defined above and below, are given in table 1 for four values of A :  0.3, 1.0, 3.0 and 
the experimental value, 2.2. 

The above quantitative results have the following implications for the physical 
quantities defined in $1. First, the mean swimming direction (p) is found from (2.8) 
and ( 3 . 9 ~ )  to be 

This should be compared with the direction P in the deterministic case when there 
is no randomness, the solution of (1.17) with@ = 0. To first order in 8, with a, = 0, 

00 

1-1 

(p) = (EJlWZ, -"J,w,,K,). 

this is 
P = (m2, - € W 1 , 1 ) .  

It can be seen, therefore, that to this order, (p) is in the same plane as P, but the 
angle it makes with the vertical is smaller by the factor JJK,, equal to approximately 
0.80 for C. niwalis (from table 1). 

The diffusivity tensor is obtained to first order from (1.15), (2 .8) ,  (2.11), ( 3 . 9 ~ )  and 
( 3 . 1 0 ~ )  to be 

(3.12) 
Kl/A 0 %(Jz -K1 J1) 

Kl/h 
-=( D 0 

' 7  ewZ(J,-Kl 4) - E W ~ ( J ~ - K ~ J ~ )  

when h = 2.2 then 
0.26 0 -O.lO€Wz 

0.26 0 . 1 0 ~ ~ ~  
- 0 . 1 0 ~ ~ ~  0 . 1 0 ~ ~ ~  0.16 

The interesting point about (3.12) is that none of k, (p>, or P is an eigenvector of D,  
even to this order, so that the diffusion tensor has no axis of symmetry aligned with 
the vertical, the drift velocity V ,  or the deterministic gyrotactic orientation P. (One 
eigenvector i s  perpendicular to the vertical plane containing P and (p).) 

The first-order corrections to the stress tensor can also be obtained simply. The 
correction to Pd) (equation (2.13)) is merely nS'(pp)(l), given in (3.10). The 
correction to Z(*) involving L contains an antisymmetric term and a symmetric term, 
the latter strictly being zero when a, = 0, but we quote it since it involves the 
contribution tof ( l )  involving o and not 8 ;  from (1.7), ( 3 . 9 ~ )  and (3.11), we have 
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K ,  K ,  K3 K4 K5 K ,  h', h', 
J1 J, *J3 4 Js J6 tJ7 J8 

0.3 0.099 0.33 0.0059 -11.5 -0.013 -0.0034 0.26 -0.067 

1.0 0.31 0.28 0.06 1 -1.35 -0.048 -0.033 0.21 -0.069 
0.015 0.00074 0.0030 -0.0060 -0.020 -0.040 -0,0051 -0.0034 

0.14 0.024 0.031 -0.064 -0.064 -0.12 -0.054 -0.034 

0.45 0.16 0.12 -0.26 -0.13 -0.20 -0.21 -0.12 

0.60 0.27 0.20 -0.41 -0.18 -0.22 -0.34 -0.17 

2.2 0.57 0.16 0.22 -0.57 -0.11 -0.11 0.065 -0.076 

3.0 0.67 0.10 0.33 -0.46 -0.14 -0.14 -0.20 -0.078 

TABLE 1 .  Values of K, and 4 ,  i = 1,2, ..., 8 

3.2. Spheroidal cells 

Since a, =+= 0 in this case, we must calculate the contributions tof(l)(O,$) from all the 
terms involving the rate-of-strain tensor on the right-hand side of (3.1), as specified 
in (3.2) and (3.3). For each term in each of those equations, the procedure is identical 
to that adopted in $3.1. Some details are given in Appendix B, and the corresponding 
contibutions to <p>, D,  etc., are listed below. The contribution to <P)(l) is 

- 2cc0(e13 '4, e23 J4, ge33 K4),  (3.14) 

where J4, K4 are defined in (B lo'), (B 11). The contribution to D(I ) /c7  is obt,ained 
from (1.15) using (B 12) and (3.14), and is 

- f e 3 3 K 5 + 8 e 1 1 - e 2 2 )  J6 t e12  J6 J5 -Kl J4) 

-2ao(  J6 - ie33K5- i (e11-e22)J6  e23('&-K1 4)  
e13(J5-K1 J4) e23(J6 -Kl J4) ge33w5 - 2 4  K4) 

where K5, J5,J, are defined in (B 13). 
The contributions to  the bulk stress tensor of the terms in f') involving the strain 

rate are again straightforward. There is a symmetric contribution to  Zsd) equal to 
nS' times the tensor given in (B 12). The part of Z ( P )  involving L (equation (1 .7) )  still 
has a n  antisymmetric and a symmetric Component; the former is equal to 

- npvhga, J4 ( :: 8 :;), ( 3 . 1 6 ~ )  

-e13 -e23 

while the latter is -$puhgai multiplied by 

1 -ie33(K6-2K.t) +$(ell -e22)  JB Be12 J8 - J4) 

$el2 J8 -ie33(K6-2K4)-$(e11 -e22) 4 e23(J, -J4) > 

e13( 5 7  - J4) e23(J7 - J4) $e33(K6-2K4) 

(3.16b) 

where K,, J7, J8 are given in (B 15). The first-order continuum model is now complete. 

i 
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4. Stability of a uniform suspension 
We now use the new continuum model to examine the stability of a uniform basic 

state in which there is no bulk motion and the cell concentration is no ; this is the same 
problem that was solved by PHK with the old continuum model. The first point of 
interest is that the deviatoric stress tensor is non-zero in the basic state, although i t  
is of course divergence-free. There are three contributions to this stress, arising from 
the intrinsic stresslets of the swimming motion ( S S ) ( O ) ) ,  from the diffusive stress 
(Z(d)(o)), and from the external couples ( P ) ( O ) ) .  We write the combination as 
pcS0), where the dimensionless So) is given by 

where x1= n , S ' / p c >  x 2  = pvhg/S', (4.2) 

from ( 2 . 1 4 ~ )  and (2.15). Note that S' is given by (2.13), ( 1 . 1 2 ~ )  and ( 1 . 1 2 ~ ) ;  ifwe use 
parameter values for C. nivalis, as given in PHK, plus h = 2.2, and estimate the 
distance lcos y (figure 3) to be b, we find that the ratio 3a,x2/2h is approximately 
3.2 x so the factor in (4.1) is positive. It also turns out that the diffusive 
contribution to S' (equation (2.13)) is only about 1 YO of X and is therefore negligible. 

For the stability analysis, the variables are non-dimensionalized using timescale B, 
velocity scale V,, lengthscale BV,, pressure/stress scale p e  and concentration scale 
no. We then write 

n = 1 +en', u = eu', p ,  = pe0 + ~ p : ,  Z = So) + €27, 

where e is a small parameter. As a consequence of the non-dimensionalization, the 
scale for leading-order vorticity and strain rate is e/B, so this e is the same as that 
defined in (2.2) ; thus (p) = ( p > ( O )  + e(p)(l), etc. The linearized governing equations 
(1.1)-( 1.3) are now 

v - u '  = 0, (4 .3 )  

(4.4) 

- = - V .  (p)(l) - ( p ) ( O )  -Vn'+ V .  (D(0). Vn'), (4.5) 
at 

where P = n o  V B g W  K P (44 

aui 
at 
- = - V p : - ~ n ' k + V . . Y ,  

anf 

and D(O) is the dimensionless version of the zero-order diffusivity tensor defined by 
(2.11), so it has the multiplier r /B  instead of CT.  We note that the first-order 
correction to D does not come into the stability analysis a t  this order, so the 
assumption of just two diffusivities, horizontal and vertical, as in the model of 
Childress et al. (1975), is indeed justified. The vectors ( p ) ( O )  and (p)(l) are given by 
(2.8) and a combination of (3 .9a)  with (3.14). Thus the cell conservation equation 
(4.5) becomes 

where D ,  = ( 7 / B ) K l / h ,  D, = ( 7 / B ) K 2 ,  
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It remains now to specify Z', which can be calculated from (1.13), ( l . l l ) ,  (1.12b), 
(1.7), (2.10), (2.16), (3.13) and (3.16). This perturbation stress tensor can be written 
as the sum of four terms, the original Newtonian term (1.6), a term due to the non- 
zero stress in the basic state, an antisymmetric term (from the E . ( L )  term in (1.7)) 
and a symmetric term. Thus we have 

2e  
R Z' = -+ ,Vo)n '+~~l~zP+2? ,  

where So) is given in (4.1), xl,xz are defined in (4.2), 

is a sort of cell Reynolds number, 

0 

- J1 o2 + 2a0 J4 eI3  

and 
- 2Ge13 + Fo, 

Here the constants A, C, F ,  G are 
estimated values for C .  nivalis. 

R = PEBlP 

and Ca, Cb are defined below : 

0 '1 O 2 -  2a0 J4 

0 - J1 o1 - 2a0 J4 eZ3 
J1"1+ 2010 4 e 2 3  0 

1 2C%2 - 2GeI3 + Fw, 
Ae,, - G(ell - ezz) - 2Ge,, - Fo, . 

given in full in Appendix C, together 
Each of these constants contains 

- 2QeZ3 - Fw, - 2Ae3, 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

with their 
one term 

proportional to xl, representing the intrinsic swimming stresslets (together with the 
small contribution from rotary diffusion), a term proportional to x1 x,, representing 
the external couples, and (with the exception of F )  a term proportional to nv/R, 
representing the 'Batchelor stresses' of the first part of (1.7). This last term involves 
each of the four constants al-a4 (Appendix A), of which only the a3 term has a 
simple interpretation: it is equivalent to a small increase in viscosity of the 
suspension. 

Even without evaluating the complicated functions of a,, and h that are involved 
in the coeBcients of Z', we can estimate the values of the dimensionless constants 
R-l, xl, x,, now, /3, using the dimensional data given in table 1 of PHK, except that 
we use V ,  = 63 pm s-l, as derived above, instead of 100 pm s-l as used there. They are 

R-' x 73, x1 x 8.1, xz x 1.5 x nov x 5 x p x 13. 

The other remaining dimensionless constant is r/B, which comes into the diffusivity 
(B/r  is a PQclet number); with 7 = 1.3 s (Hader & Hill 1990) and B = 3.4 s (PHK), 
r / B w  0.38. The above numbers indicate that the leading contributions to the 
symmetric stress Zb are the O(R-') Newtonian term and the O(xl) intrinsic stresslet 
term ; the O(no v / R )  Batchelor stress, in particular, is negligible. The numerical values 
of the constants (e.g. Appendix C) do not alter these conclusions. Of the other terms 
in (4.8), the Soh' term (cc x,) is not small, but the antisymmetric term is small; we 
retain it, however, in case it introduces any qualitatively new effects into the 
stability analysis. 

As in PHK, the governing equations are linear differential equations with constant 
coefficients, so we can examine stability in terms of individual Fourier modes. We 
therefore rewrite all perturbation quantities in the form (for example) 

n'(x, y , z , t )  =Nexp[at+i(kx+Zy+mz)], 
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substitute in the equations and eliminate the amplitudes ( N ,  etc.) to leave a 
dispersion relation for the growth rate a in terms of the (dimensionless) wavenumbers 
k ,  I, m. The dispersion relation derived in PHK, in the present notation, was t,he 
quadratic equation 

[( 1 - ao) k2 + (1 + ao) m2],  (4.12) [a+ im +D,(k2 + m2)]  [ B + ~ k2;m'] = Pk2+ml k2 

where without loss of generality we have taken I = 0 and D, is the dimensionless 
isotropic diffusivity. 

Each new aspect of the present model affects a different term in (4.12). The first 
bracket on the left-hand side comes from the left-hand side of (4.7), and therefore 
becomes 

a + iK, m +D, k2 +Dv m2 ; (4.13) 

the right-hand side of (4.7) leads to  the square bracket on the right-hand side of (4.12) 
becoming 

(J1 + a. J4) k2 + (J1 - a. J4 + 3a,K4) m2. (4.14) 

Remaining changes all come from the V - Z '  term in (4.4). The non-zero basic-state 
stress causes P to be replaced by 

(4.15) 

while the factor a + ( k 2  + m 2 ) / R  is affected by both Za and Zb and becomes 

+ (G+F)  k2 + (G -F) m2 +- m2k2 (3A - 4G - C- 2F) 
k2 + m2 

a+- 
R k2 + m2 

x2[(J1+ a 0  J4) k2 + (Jl - a 0  4) m2]. (4.16) 

Thus the dispersion relation is still a quadratic equation for a ;  the introduction of 
new effects has not caused any mode-splitting, merely quantitative changes in the 
values of u and of the critical and most unstable wavenumbers. Details can either be 
computed directly for particular parameter values, or discussed in particular limits, 
as was done by PHK. Having retained the antisymmetric stress term to see if it had 
any qualitative effect (such as mode-splitting), we can now see that it does not, and 
contributes only the small x1x2 term in (4.16). We therefore neglect it from now on. 

(i) No vertical variation : m = 0. In this case the roots of the quadratic equation are 

where the largest term in the constant G + F  is 

G +F x x1(J2 + a. J5) 
from Appendix C. Thus one root is positive, indicating instability, if and only if k is 
less than the critical value k,, given by 

(4.1 8 a) 
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Moreover, the positive root is greatest, giving the most unstable disturbance, when 
k = k, where 

It (4.18b) 
2 D L  i‘ E + X 1 ( J 2 + a 0 J 5 )  

(2) = bk + [A + x ,  (J2 + a. J5)]l’ . 

The dimensionless growth rate of the most unstable disturbance is 

(4 .18~)  

The corresponding results from (4.12), as derived by PHK, are 

Differences between the present and former results stem from (a)  the value of D ,  
relative to D ,  (p and R being unchanged), as well as (b )  the values of the constants 
J1 +aoJ4 and J2 +ao J5. (a) D ,  is the diffusivity used by PHK cm2 s-l) made 
dimensionless by E B ,  so D ,  x 0.74, while D ,  = (7/B) (K,/A) x 0.10. ( b )  We see from 
table 1 that, for the values of h quoted, J1 and J2 are positive, while J4 and J5 are 
negative. However, the magnitude of J4 is less than that of Jl, and a. lies between 0 
and 1, so k: is certainly positive; on the other hand, the magnitude of J5 can exceed 
that of J2, so J, +ao J5 would be negative if a. were large enough and A small enough. 
Using our best estimates for C. nivalis ( A  = 2.2, a. = 0.31), we obtain J,+cro J5 z 
0.12; coupled with the fact that x 1 R  x 0.11, this is equivalent to a small decrease in 
Reynolds number, with an insignificant effect on the quantitative results. On the 
other hand, Jl+ao J4 x 0.37, which is significantly less than 1 -ao x 0.69. The net 
effect on the estimate for k:, however, is dominated by the fact that  the measured 
diffusivity is much less than that assumed by PHK (DH < D*): ( 4 . 1 8 ~ )  gives 
k: x 0.65, while ( 4 . 1 9 ~ )  gives k: = 0.17. The estimate for (km/kJ2 is reduced from 
0.083 (PHK) to 0.034, and the predicted dimensionless maximum growth rate gm is 
also reduced, from 0.10 (PHK) to 0.057. 

These dimensionless results translate into predictions of dimensional wavelength 
A$ and growth rate u: of the most unstable disturbance as follows: 

A$ = 27cBK/km x 9.0 mm, g: = cm/B x 0.017 s-l, 

compared with 11 mm and 0.029 s-l from the PHK values. I n  fact, this estimate of 
most unstable wavelength is exactly the same as that quoted by PHK, as a result of 
the fact that the estimate of V ,  used there (100 pm s-l) is greater than the measured 
value (63 pm s-l) used in the scalings here. The conclusion must therefore be the 
same as that deduced in the earlier paper: the fact that  observed bioconvection 
patterns have a smaller wavelength (1-3 mm ; Kessler 1986a) than predicted is most 
likely to be a consequence of nonlinear factors that do not arise in the linear stability 
theory. 

We may note here that the predicted growth rate gz is substantially smaller than 
the estimate of D, (0.13 s-l) made in $2. Thus the assumption that it is sufficient to  
find quasi-steady solutions of the Fokker-Planck equation (1.16) is justified, for 
estimating not only the critical wavenumber k,, but also the details of the most 
unstable disturbance. 
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(ii) Non-zero vertical wavenumber. The first point to make is that, when m + 0, the 
roots of the quadratic equation are inevitably complex on account of the imaginary 
terms in (4.13) and (4.15). This means that single modes with non-zero m propagate 
as growing (or decaying) waves in the positive or negative z-direction. This point was 
missed by PHK, although there is an im term in (4.12); this term, like the 
corresponding iK,m in (4.13), arises from the fact that the micro-organisms swim 
upwards, on average. The imaginary term in (4.15) arises from the non-zero basic 
state stress. 

We can deduce both the direction of propagation of three-dimensional dis- 
turbances, and whether they are more unstable than those with m = 0, by making 
use of the large magnitude of R-l compared with xl, D, and other 0(1 )  quantities 
in the quadratic equation (R-l % x1 essentially because the suspension is dilute, and 
R-' % D, because the kinematic viscosity greatly exceeds the cell diffusivity). 
Scalings for k and (T are suggested by the above results with m = 0. Thus, we take 

R 4 1 with k2 =RK2, m = Rm, (T = Ra,+R2a2+ ... . 
Substitution into the quadratic equation gives 

u1 = P(4+ao4)-D,K2-iijlZK1, (4.20) 

which is the same result as (4.17), suitably scaled and with m $: 0. The sign of the 
imaginary term shows immediately that disturbances with m + 0 propagate 
upwards, in the positive 'z-direction, and this leading imaginary term comes from 
upswimming alone. 

At the next order in R we obtain 

1 m 2  + p 7 (J, + 3ao 4, - 3a0 K 4 )  + imx, K,(J, + a. 4,) . (4.2 1) 
Ic 

We note first that the imaginary term in (4.21), arising from the non-zero basic- 
state stress, has the same sign as that in (4.20) and is therefore also associated with 
upwards-propagating disturbances. Next, if all the bracketed coefficients are 
positive, the real part of c2 is negative and the leading effect of non-zero m on the 
growth rate is to reduce it : three-dimensional disturbances are stabilizing. The only 
way the introduction of non-zero m could be destabilizing would be if the coefficient 
J1+3ao(J4-K,) were negative, but the results in table 1 indicate that both J, and 
J4 -K4 are positive, a t  least for the range of h values used here. We therefore conclude 
that, in practice, the most unstable disturbances have zero vertical wavenumber. 
This conclusion is different from that obtained in PHK because in the old model 
5, + 3a,(J4--K4) was replaced by 1 - 3a,, which could be negative if a, > $. It may be, 
of course, that this coefficient could change sign for large A, but the 4 have not been 
computed for h >, d10. 

5. Discussion 
It is worth summarizing the major differences between the equations of the new 

continuum model for suspensions of swimming cells and those of the old one from 
PHK. There are two differences in the cell conservation equation (1.3) : first, the cell- 
swimming contribution to cell flux, nV,, is not equal to the deterministic value 
nV, P, but to n&(p), and secondly, cell diffusion is represented by the tensor D,  given 
by (1.15), which is not isotropic. In the limit of zero ambient flow, V,  is of course 
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directed vertically upwards, but has a magnitude, K ,  V,, which depends on the value 
of A, but is significantly less than V , ;  when there is weak ambient flow V, is not 
vertical, representing gyrotaxis, but is closer to the vertical than P is. Similarly, for 
zero ambient flow D is orthotropic, with horizontal diffusivity exceeding the vertical 
(equation (2.12)). Even for a weak ambient flow, however, none of the vectors k, (p) 
or P is an eigenvector of D. 

All differences in the momentum equation arise from modifications to  the stress 
tensor. For dilute suspensions, both the symmetric and antisymmetric Batchelor 
stresses (1.7) are negligible compared with the distribution of stresslets associated 
with the cell’s intrinsic swimming motions, Z@), in equation (1.12b).  This consists of 
a non-zero basic-state stress even in a uniform suspension, plus a perturbation that 
is linear in the local vorticity and strain rate (when these are small). This 
perturbation is smaller than the basic Newtonian stress, but not negligibly so for the 
cells of major interest here. 

It should be emphasized that the rotational diffusivity, D,, which arises in the 
Pokker-Planck equation (1.6), is not tied in a direct mechanical manner to 
temperature like that arising from Brownian motion (as expressed by the Einstein 
relation (1.19)). Instead, it is related to the operation of the algal cell. One may think 
of such a cell as an automaton (in that it can go on swimming for long periods, 
drawing upon its stored energy) whose mean direction of locomotion is guided by 
environmentally supplied forces and torques, and where the variance around the 
mean is due to internally generated stochastic impulses which affect the cells’ 
propulsion apparatus. It may indeed turn out, when the cells have been studied more 
intensively, that the diffusion constant in the Fokker-Planck equation is not a scalar 
quantity but it too, like 0, may be a tensor. 

It will be desirable to apply the present model to the other stability problem that 
has been formulated in the context of bioconvection, that  of a layer of finite depth 
in which the upswimming of cells is coupled with cell diffusion to generate a density 
stratification that is unstable if the Rayleigh number is large enough, even without 
the further destabilizing effect of gyrotaxis. This was the problem studied by 
Childress et al. (1975) and by Hill, Pedley & Kessler (1989). The latter paper, in 
particular, reveals that different modes can be (a )  critical and ( b )  most unstable a t  
different parameter values, suggesting that a weakly nonlinear theory would be of 
considerable interest. Thus, not only should we repeat that linear theory with the 
present model, but we should also extend the model to  second or third order in s, 
That will be feasible only if we eliminate some of the more complex terms in advance, 
by neglecting small terms and possibly restricting attention to spherical cells 
(ao = 0) from the start. 

To analyse either the fully nonlinear bioconvention patterns that are observed, or 
the collective motions that arise in other experiments (e.g. the focused beam of cells 
on the axis of downwardly directed Poiseuille flow (Kessler 1985a), it will be 
necessary to consider values of s that  are not small a t  all. The only limit that offers 
hope of analytical progress is that in which either h or E: (or both) is taken to be large, 
with the other at least O(1). This is a singular limit, corresponding to the case of weak 
Brownian motion, which formed the subject of several papers by Hinch and Leal 
(e.g. 1972a, b ;  Leal & Hinch 1971). Otherwise, the Fokker-Planck equation (2.1) will 
require solution in the form of a doubly infinite series of spherical harmonics. 

The large-s limit corresponds to a case in which the randomness in cell orientation 
is weak, and it might be supposed that the resulting continuum model would 
resemble the earlier one of deterministic gyrotaxis (PHK). However, there was one 
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weakness in that model, which would now disappear ; that  was the restriction to flows 
in which the viscous torque on a cell did not so far exceed the gravitational torque 
as to cause the cells constantly to tumble and to have a stable, quasi-steady 
orientation. In other words, that model required 8 5 1 ; in following Hinch & Leal 
(1972b) we shall recognize that the cell orientation vector can follow an almost closed 
orbit inp-space (corresponding to cycloidal orbits of the cell centre (Kessler 1985b)), 
and this can be analysed. Thus, despite the tumbling, there will be a specific, steady 
(p), for example. 

Other aspects of the cell suspension that require further study include the 
following : 

(i) Time-dependence The analysis of time-dependent flows whose timescale is not 
much greater than D;l, so that the af/at term should not be neglected in (1,16). 

(ii) Cell-cell interactions As the cell concentration increases, the frequency of 
cell-cell interactions (or ‘collisions ’) will also increase, and the ‘mean-free path’, i.e. 
the length of a cell’s trajectory between collisions, will decrease. This will lead to a 
reduction in the magnitude of cell diffusivities, as pointed out by Kessler (1986a). 
Indeed, the data of Hader & Hill (1990) seem to show such a trend, albeit over a small 
range of concentrations (5 x 105-2 x los cells ~ m - ~ ) .  More frequent changes of 
direction can presumably be modelled by an increase in the effective rotational 
diffusivity, D,, and hence by a decrease in A and a consequent reduction in the mean 
vertical velocity V,. These are all effects on the cell conservation equation. The 
momentum equation will be influenced directly by the increase in concentration 
through the negative buoyancy term (B, equation (4.6)) and through the increased 
relative importance of the intrinsic stresslet term (xl, equation (4.2)). It will also be 
influenced indirectly by changes to the Batchelor stresses (1.7),  but since these are 
so small compared to the intrinsic stresses, it will not be a high priority to compute 
them (the complexity of the problem can be seen from, for example, Batchelor & 
Green (1972) and Batchelor (1977) for not-quite-dilute suspensions of inert spheres). 

(iii) Effects of Jagella Probably much more important is the fact that the 
swimming cells are not pure spheroids, because of the flagella that propel them. The 
presence of the flagella will influence both the magnitude of the viscous torque 
exerted on the cell by the ambient vorticity and strain rate and the rate at which the 
cell axis tends to reorient itself when it is perturbed from its equilibrium direction P. 
Both these effects will involve a change in equation (1.17),  and their quantitative 
evaluation will require a detailed analysis of the low-Reynolds-number hydro- 
dynamics of the locomotion of the cells in question. Such an analysis will also be 
necessary in order to provide a more careful evaluation of the intrinsic stresslet 
contribution to the stress tensor (equation (1.12)). 

(iv) Microgravity A good test and application of the present model would be to 
investigate the same species (C. nivalis) with different values of A. This can be 
achieved by conducting experiments in different gravitational fields, so g and hence 
B are modified. A microgravity environment would be required to investigate a case 
with small A, dominated by randomness in the cell swimming. Note that it is 
straightforward to adapt the theory for e = 0(1)  when A < 1, corresponding to  the 
case of strong Brownian motion from Brenner & Weissman (1972) for example. A 
centrifuge could be used to increase A, although one would have to remember that 
if g were increased too far, the neglected sedimentation velocity would become 
comparable with the cell swimming speed. 

In  this paper, we have developed and applied the new continuum model with 
bottom-heavy biflagellate algae in mind. However, there is no reason to limit the 
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application either to such organisms or to  the single reorienting couple of gravity. 
Many species of micro-organism, including many bacteria, are chemotactic, in that 
they tend to swim up (or down) concentration gradients of (say) oxygen, nutrients 
or metabolites. Thus one can replace gravity in the theory by the concentration 
gradient (Kessler 1989), though we have no a priori way of estimating the magnitude 
of the restoring couple, and hence the effective value of B.  However, measurements 
such as those of Hader & Hill (1990) or Berg & Brown (1972) could be used, together 
with the results of our theory, to determine it. (See also KeIIer & Segel 1971 for EL 

similar approach to chemotaxis.) 
A more complicated problem is that  of modelling phototactic micro-organisms, that 

is cells (such as many algae) that tend to swim towards (or away from) the light. In 
this case, quite apart from not knowing B, i t  is not easy to give a quantitative 
specification of the light to which the cells respond, since there may be different 
direct and diffuse components, depending, for example, on the weather and the 
turbidity of the water in which the cells live. I n  particular, the intensity of light a t  
a point may depend on the concentration of the cells themselves, not just locally but 
over a considerable region. 

A further interesting development would be to apply the model to species in 
addition to Chlamydomonas (e.g. Dunaliella or Volwox), which respond to two 
different orienting torques, say both gravity and light. Different relative orientations 
of the two external fields would lead to  a different behaviour, the experimental study 
of which in a variety of species would be very revealing. 
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with this theory. The work was done while T. J. P. was on sabbatical leave in the 
Physics Department a t  the University of Arizona, and he is extremely grateful to  
that Department and to  the Center for the Study of Complex Systems for facilities 
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Appendix A 
Letting r = a/b ,  so that a. = (r2-1)/(r2+l),  the constants a1,2,3,4 in (1.7), as in 

(l . l l) ,  uF in ( 1 . 1 2 ~ )  and al in (1.18) are defined as follows (from Jeflery 1922 via 
Batchelor 1970 and Leal & Hinch 1971 ; see also Brenner 1974) ; the values quoted are 
for r = 1.38 (a, = 0.31): 

= 0.135, a2 = 

- 1.15, a 3 = - -  
1 

I1 

1 
a4 = - 1-- - -0.127, 

311( g:) - 

a5 = 6.80, 
2(r2 + 1) a5 = = 3.16, al = ___ 

2r212+ ( r2+  1)'L2 3(r2- 1 )  
6(r4 - 1) 
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where 

r2(2r2-5+3y) - - 0.866, - - 2r dh 
I' = 1: (r2+h)i(1+h)3 2(r2-1)' 

r ( r2  + 1) dh ( r2 + 1 )  ( r2 + 2 - 3r2y) 
( r2-  1)2 

= 0.783, - - 

r2[2r2+ l -y (4r2-1) ]  
4(r2-  I), 

= 0.315, - - 

cosh-l r 
and 

Also oF w 1.08 (Happel & Brenner 1965). 

y =  r(r2-1)i. 

Appendix B. Contribution to the first-order averages involving e 
In view of (3.1) and (3.2), we write this contribution as 

f(1) = -2a 0 pL(ie33 gZ(') + e13 g 3 ( 2 )  'OS $ + e23 g 3 ( 2 )  sin $ 

-e22 )  g 4 ( x )  'OS '$ + g 4 ( 2 )  sin 2 # > 7  (B 

and the functions g , ,  g 3 ,  g ,  satisfy the equations 

2'g2  = 2 eA5[ - Ax( 1 - x z )  + 32, - 11, (B 2) 

(B 3) 2 ' g 3 - -  1 - 2 2  g3 - - e A 5 ( l - x 2 ) ~ [ h ( 2 x 2 - 1 ) + 6 x ] ,  

where 
d d 

dx dx 
2'9 = - [( 1 -2) g'] - h - [( 1 -x2) g]. 

The solution of (B 2) is 
g ,  = e"(1-x2-2Kl/h), 

where K ,  is given by (2.9) and the normalization condition I1lg,dx = 0 has been 
used. Equation (B 3) has exactly the same form as (3.4), apart from a different right- 
hand side. The solution is a n+z 

n-0 r-1 
~3 = C An C an,rP:(x), (B 6) 

where C Z , , ,  = 0 if n+r  is odd, a",,, = -+, &l,l  = -g, 1 "  a1,3 = -- 126, and the recurrence 
relation for en,,  is the same as that for an,, (equation (3.7a)), but with b,,,,, replaced 
by 

It should be noted that the limits of the sums in (B 6) are different from 

(B 7)  

those in (3.6). 
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Finally, the solution of (B 4) involves associated Legendre functions P,2(x), and it 
can be written 

m %+2 

n-0 r-2 
~ 4 =  C An C. an,rP;(x), (B 8) 

where = 0 if n + r  is odd, cio,2 = -4, c i l ,3  = -& and 

(" ') r t q )  ( n + 4 ) ( 2 r + l ) r  - 
- 

with bn+l, r = - (B 9b) 

when n + r is even. 
The contribution of these terms to (p)") is 

- 2 a 0 ( e 1 3 4 ,  e 2 3 4 3 & 3 3 K 4 ) ,  

1 m 

where J4 = 7~hp  (1 -x2)1gg(z )  dz = tnhp x h2z+1b2z+l,  1, (B 10) 
1-0 

1 

K4 = nhp /-, g2(x) xdx = 1 - coth2 h - 2KJh. (B 11) 

The contribution to (pp)( l )  is 

-2ao( - i e 3 3 K 5 + a ( e l l - e 2 2 )  J6 ae12 J6 e13 J5 

te12 J6 - i e 3 3 K 5 - a ( e l l - e 2 2 ) 4  e23  J5 

e13 e23 J5 % 3 3 K 5  

where K5 = nhplflx2g2(x)dx = h coth2h), (B 13u) 

m 
= l, (1 -x2) g4(x) dx = Ynhp x h2zb21, 2. (B 13c) 

1-0 

Finally, the contribution to (2@-k)pp)(') is 

1 -fe33(K6 - - e22) J8 $12 47 e13 J7 

be12 47 -~e33(K6-2K4)-a(e,1-e22) JB e23 J7 f 

e13 J7 e 2 3  4 % e 3 3 K ,  

(B 14) 

K6 = 1+-+,-- 24 A2 54 h 3cothh h (l+$)-coth2h(l+$) (B 15a) 

- 2a0 

where 
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Appendix C. Constants in Zb 

A 2  
A = $x1 a,K, + zxl xz a:(K6 - 2K4) + R 

= -0 .051~ ,+0 .037~1~2-2 .38n ,v /R ,  

= -0.040~,+0.001~1~2+2.32n,v/R, 
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